3.14.67 \(\int \frac {1}{(b d+2 c d x)^{9/2} \sqrt {a+b x+c x^2}} \, dx\) [1367]

Optimal. Leaf size=188 \[ \frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac {10 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{21 c \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt {a+b x+c x^2}} \]

[Out]

4/7*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)/d/(2*c*d*x+b*d)^(7/2)+20/21*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^2/d^3/(2*c*d
*x+b*d)^(3/2)+10/21*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2)
)^(1/2)/c/(-4*a*c+b^2)^(7/4)/d^(9/2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {707, 705, 703, 227} \begin {gather*} \frac {10 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{21 c d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt {a+b x+c x^2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 d^3 \left (b^2-4 a c\right )^2 (b d+2 c d x)^{3/2}}+\frac {4 \sqrt {a+b x+c x^2}}{7 d \left (b^2-4 a c\right ) (b d+2 c d x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((b*d + 2*c*d*x)^(9/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(4*Sqrt[a + b*x + c*x^2])/(7*(b^2 - 4*a*c)*d*(b*d + 2*c*d*x)^(7/2)) + (20*Sqrt[a + b*x + c*x^2])/(21*(b^2 - 4*
a*c)^2*d^3*(b*d + 2*c*d*x)^(3/2)) + (10*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d
 + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(21*c*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[a + b*x + c*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 703

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2
- 4*a*c)], Subst[Int[1/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 705

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*
c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 707

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[-2*b*d*(d + e*x)^(m
+ 1)*((a + b*x + c*x^2)^(p + 1)/(d^2*(m + 1)*(b^2 - 4*a*c))), x] + Dist[b^2*((m + 2*p + 3)/(d^2*(m + 1)*(b^2 -
 4*a*c))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rubi steps

\begin {align*} \int \frac {1}{(b d+2 c d x)^{9/2} \sqrt {a+b x+c x^2}} \, dx &=\frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {5 \int \frac {1}{(b d+2 c d x)^{5/2} \sqrt {a+b x+c x^2}} \, dx}{7 \left (b^2-4 a c\right ) d^2}\\ &=\frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac {5 \int \frac {1}{\sqrt {b d+2 c d x} \sqrt {a+b x+c x^2}} \, dx}{21 \left (b^2-4 a c\right )^2 d^4}\\ &=\frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac {\left (5 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac {1}{\sqrt {b d+2 c d x} \sqrt {-\frac {a c}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {c^2 x^2}{b^2-4 a c}}} \, dx}{21 \left (b^2-4 a c\right )^2 d^4 \sqrt {a+b x+c x^2}}\\ &=\frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac {\left (10 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{21 c \left (b^2-4 a c\right )^2 d^5 \sqrt {a+b x+c x^2}}\\ &=\frac {4 \sqrt {a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac {20 \sqrt {a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac {10 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{21 c \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.07, size = 99, normalized size = 0.53 \begin {gather*} -\frac {2 \sqrt {d (b+2 c x)} \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \, _2F_1\left (-\frac {7}{4},\frac {1}{2};-\frac {3}{4};\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{7 c d^5 (b+2 c x)^4 \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((b*d + 2*c*d*x)^(9/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-2*Sqrt[d*(b + 2*c*x)]*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[-7/4, 1/2, -3/4, (b + 2*c
*x)^2/(b^2 - 4*a*c)])/(7*c*d^5*(b + 2*c*x)^4*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(690\) vs. \(2(160)=320\).
time = 0.94, size = 691, normalized size = 3.68

method result size
elliptic \(\frac {\sqrt {d \left (2 c x +b \right ) \left (c \,x^{2}+b x +a \right )}\, \left (-\frac {\sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a c d x +b^{2} d x +a b d}}{28 d^{5} \left (4 a c -b^{2}\right ) c^{4} \left (x +\frac {b}{2 c}\right )^{4}}+\frac {5 \sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a c d x +b^{2} d x +a b d}}{21 \left (4 a c -b^{2}\right )^{2} d^{5} c^{2} \left (x +\frac {b}{2 c}\right )^{2}}+\frac {10 \left (\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \EllipticF \left (\sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\right )}{21 \left (4 a c -b^{2}\right )^{2} d^{4} \sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a c d x +b^{2} d x +a b d}}\right )}{\sqrt {d \left (2 c x +b \right )}\, \sqrt {c \,x^{2}+b x +a}}\) \(556\)
default \(\frac {\sqrt {d \left (2 c x +b \right )}\, \sqrt {c \,x^{2}+b x +a}\, \left (40 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \EllipticF \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) \sqrt {-4 a c +b^{2}}\, c^{3} x^{3}+60 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \EllipticF \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) \sqrt {-4 a c +b^{2}}\, b \,c^{2} x^{2}+30 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \EllipticF \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) \sqrt {-4 a c +b^{2}}\, b^{2} c x +5 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \EllipticF \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) \sqrt {-4 a c +b^{2}}\, b^{3}+80 c^{4} x^{4}+160 b \,c^{3} x^{3}+32 x^{2} c^{3} a +112 b^{2} c^{2} x^{2}+32 x a b \,c^{2}+32 b^{3} c x -48 a^{2} c^{2}+32 a c \,b^{2}\right )}{21 d^{5} \left (2 c^{2} x^{3}+3 c \,x^{2} b +2 a c x +b^{2} x +a b \right ) \left (4 a c -b^{2}\right )^{2} \left (2 c x +b \right )^{3} c}\) \(691\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/21*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*(40*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*
c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*
c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+b^2)^(1/2)*c^3*x^3+60*((b+2*c*x+(-4
*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2)
)/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1
/2))*(-4*a*c+b^2)^(1/2)*b*c^2*x^2+30*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a
*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+
b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+b^2)^(1/2)*b^2*c*x+5*((b+2*c*x+(-4*a*c+b^2)^(1/
2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2
)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+
b^2)^(1/2)*b^3+80*c^4*x^4+160*b*c^3*x^3+32*x^2*c^3*a+112*b^2*c^2*x^2+32*x*a*b*c^2+32*b^3*c*x-48*a^2*c^2+32*a*c
*b^2)/d^5/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)/(4*a*c-b^2)^2/(2*c*x+b)^3/c

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((2*c*d*x + b*d)^(9/2)*sqrt(c*x^2 + b*x + a)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.15, size = 306, normalized size = 1.63 \begin {gather*} \frac {5 \, \sqrt {2} {\left (16 \, c^{4} x^{4} + 32 \, b c^{3} x^{3} + 24 \, b^{2} c^{2} x^{2} + 8 \, b^{3} c x + b^{4}\right )} \sqrt {c^{2} d} {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right ) + 16 \, {\left (5 \, c^{4} x^{2} + 5 \, b c^{3} x + 2 \, b^{2} c^{2} - 3 \, a c^{3}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}}{21 \, {\left (16 \, {\left (b^{4} c^{6} - 8 \, a b^{2} c^{7} + 16 \, a^{2} c^{8}\right )} d^{5} x^{4} + 32 \, {\left (b^{5} c^{5} - 8 \, a b^{3} c^{6} + 16 \, a^{2} b c^{7}\right )} d^{5} x^{3} + 24 \, {\left (b^{6} c^{4} - 8 \, a b^{4} c^{5} + 16 \, a^{2} b^{2} c^{6}\right )} d^{5} x^{2} + 8 \, {\left (b^{7} c^{3} - 8 \, a b^{5} c^{4} + 16 \, a^{2} b^{3} c^{5}\right )} d^{5} x + {\left (b^{8} c^{2} - 8 \, a b^{6} c^{3} + 16 \, a^{2} b^{4} c^{4}\right )} d^{5}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

1/21*(5*sqrt(2)*(16*c^4*x^4 + 32*b*c^3*x^3 + 24*b^2*c^2*x^2 + 8*b^3*c*x + b^4)*sqrt(c^2*d)*weierstrassPInverse
((b^2 - 4*a*c)/c^2, 0, 1/2*(2*c*x + b)/c) + 16*(5*c^4*x^2 + 5*b*c^3*x + 2*b^2*c^2 - 3*a*c^3)*sqrt(2*c*d*x + b*
d)*sqrt(c*x^2 + b*x + a))/(16*(b^4*c^6 - 8*a*b^2*c^7 + 16*a^2*c^8)*d^5*x^4 + 32*(b^5*c^5 - 8*a*b^3*c^6 + 16*a^
2*b*c^7)*d^5*x^3 + 24*(b^6*c^4 - 8*a*b^4*c^5 + 16*a^2*b^2*c^6)*d^5*x^2 + 8*(b^7*c^3 - 8*a*b^5*c^4 + 16*a^2*b^3
*c^5)*d^5*x + (b^8*c^2 - 8*a*b^6*c^3 + 16*a^2*b^4*c^4)*d^5)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (d \left (b + 2 c x\right )\right )^{\frac {9}{2}} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**(9/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d*(b + 2*c*x))**(9/2)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((2*c*d*x + b*d)^(9/2)*sqrt(c*x^2 + b*x + a)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (b\,d+2\,c\,d\,x\right )}^{9/2}\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*d + 2*c*d*x)^(9/2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((b*d + 2*c*d*x)^(9/2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________